A Different Internet

A fascinating article: Lori Emerson and Internet pioneer John Day explore What’s Wrong with the Internet and How We Can Fix It. Emerson’s quest was “to figure out how we are unwittingly living out the legacy of the power/knowledge structures that produced TCP/IP” and ” how the Internet could have been and may still be utterly different.” In this article, Day argues that “’the Internet is an unfinished demo’ and that we have become blind not only to its flaws but also to how and why it works the way it works.”

One of the interesting things about this article is Day’s perspective on the consequence of BBN’s early architectural choices and how money can lead to a less-than-optimal path forward, then followed despite great ongoing costs and unanticipated complications. For example, settling on TCP/IP was a choice for “modularity” with a necessary perspective to the layered ecosystem that the modules would operate in.

Day’s points about Netflix and peering are more generalized than they should be, but his arguments do make me wonder what a “different Internet” would be like and how we might get there.

TwitterFacebookGoogle+PinterestShare

Local Emergency Preparedness

The Community Emergency Response Team (CERT) training just concluded and I am now certified as a CERT member. The Alameda County Fire Department held the training, as they’ve been doing for many years. I’ve taken the 20-hour weekend course several times in the past, and it’s always an amazing learning experience. This time I also took the online IS-317: Introduction to Community Emergency Response Teams training through FEMA, which was a good preview of the hands-on practice that the training offered. I recommend taking either or both. This information may well save the lives of you and your family members. Continue reading

TwitterFacebookGoogle+PinterestShare

iacsf: What’s Next? Shaping the Future

Panel:
Mark Yahiro, Intel
Timothy Tuttle, Expect Labs
Liesl Capper, IBM
Roberto Pieraccini, Jibo

Intel offers platform and foundation to use speech, motion, who you are, to use data in intelligent ways.

Jibo (a male character) is not humanoid, but has stereo camera, mic, speaker identification, motion or facial expression detection, display, touch points. Just got big crowned sourced funds. Japanese trend is to more humanoid, is creepy, uncanny valley. farthing can express feelings (teapot in beauty and beast).

Ongoing conversations? Watson uses experts systems, known data sets, to develop ranked diagnosis of medical conditions.

Movie Her and anticipatory agents? Tim suggests we’re not as far off as we think. We are going to starts seeing intelligence in new devices. Recent breakthroughs from IBM in deep learning remarkably reduce error rate within a couple of years.

What is the future? Cognitive glue working across other agents. Holy grail is all human interaction. There are already a lot of agents, interacting between and across them is learning a new language. Filter the right data specific usage, depending on the usage do we filter before or after? Where is context? What makes sense.

Speech recognition is about 60, 65 years old. Big problem is that once you understand how to did it, depends on the language and what you are talking about. Can’t create a closed loop.

TwitterFacebookGoogle+PinterestShare

iacsf: Executive Summit

Panel:
Brett Beranek, Nuance
Fred Brown, NextIT
Brian Garr, LinguaSys (21 languages, today’s process release)
Phil Gray, interactions
Tom Lewis, Smart Action

Dan: people turn to others as they escalate customer care, going to people as last resort. Human interaction? Phil: path is invisible to customers. Highly conversational experience does take people, but systems learn too. Looking for same level of service. Fred says his work is getting very close, accurate. Brian works with semantics. Look at Google translate that works with swashes of words, vs LinguaSys which gets the right fidelity of the conversation. They build first 21 language maps, will add next 20 languages at no cost. Brett: great digital experience for gen y or millennials feel that if they have a to talk an agent, you’ve failed.

Dan: how much is automated and how soon? Fred: it’s not simple implementation. Must build it well first. Sargent Star is a good model, how much effort to build it up. Tom: $3.5 billion investments, but consumer has been programmed to think that IVR stinks. Call center manager perspective for 2050 will not be same as today, so where is tipping point? Investments in AI, also in voice recognition in HD vs calling a copper line device. Plumbing, standards, telcos.

How to resolve the zero out problem? Phil: from Hyatt, don’t remove people, maximize their expertise. Is about making things easier for customers. Tom: reflective interaction is key. Fred: start on smart device. Brett: consumer expectations are changing quite a bit, experience with e.g. Dom makes consumers aware that this experience may be elsewhere. Its up to enterprises to make that work. Brian: conversation needs to expand to consistent global experience.

Plumbing: when will this happen for smaller enterprises? Brian: we are doing this now, will change the price structure for NLU. Phil: call centers have different adoption curves, different technologies. Where are priorities? Today this is scalable. Brett: is accessible technology, kaspersky software implemented, got Roi within 3 months. Fred: it matters what consumers need, getting the natural language understanding, and how to hook that to back end. Brett: business models need to evolve, esp in contact center space. Dan: models, APIs, will happen, is in a parallel experience.

Brian: going for statistical to semantic application, coder I can build a system.

Brett: lot of enterprises waking up but not a good comprehension of where this might deliver good business value. Where are your cost drivers? What are your shopping cart use cases that cause problems? Build virtual assistants to address these problems. Fred: look at conversations, drop AI in after examining. Roi will be proof. Tom: need to present in a way that minimizes risk, adoption of technology has decreased over time. Business model includes understanding risk.

TwitterFacebookGoogle+PinterestShare